# Autonomous Road Vehicles

**Self-driving Cars** 



DALL-E2 Generated Image

## TABLE OF CONTENTS

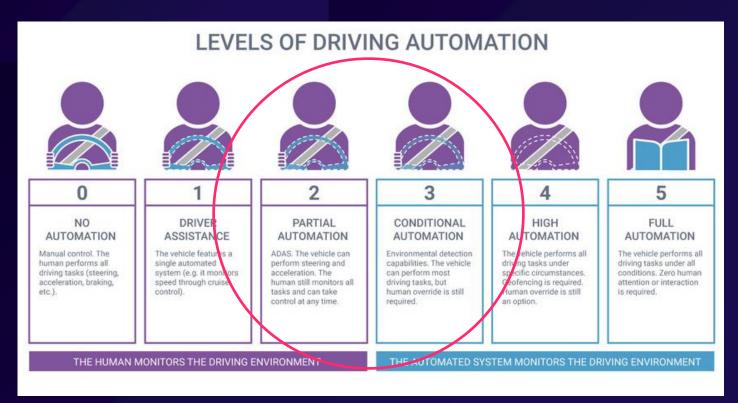


01

The Evolution of Self-Driving Cars



**Competitive Landscape** 




04
Ethical Concerns





#### Reminder: Levels of Automation



Source: Synopsys – Autonomous Driving Levels

01

The Evolution of Self-Driving Cars



DALL-E2 Generated Image

#### The Evolution of Self Driving Cars



Google started testing robot cars on roads



Uber tested autonomous taxis with human co-pilot



- Uber AV with human safety driver on board killed a pedestrian
- Autonomous lorries tested on highways
- Nissan-DNA launched selfdrive experiment
- Waymo ran a limited commercial robotaxi service

14<sup>th</sup> Century ... 1990's

2000's

....2015

2016

2017

2018

Appendix 1: The Evolution



- Tesla unveiled Autopilot
- Baidu drove a retrofitted BMW 3 Series autonomously
- Delphi AV drove from coast to coast



- NuTonomy selfdrive taxis tested
- Gallup poll in the US shows majority public concern about AVs



#### The Evolution of Self Driving Cars



- Honda leased limited edition of 100
  Legend Hybrid EX sedans with Level 3
  automated driving equipment that
  legally allow drivers to take their eyes
  off the road
- Mercedes-Benz received German approval for a Level 3 Automated Lane Keeping System (ALKS) self-driving technology

2020 | 2021

- GM launched Origin robotaxi with Lyft
- Volvo and Uber announced plan for robotaxi service with Geely and Nvidia
- UNECE WP.29 GRVA established regulation on SAE Level 3



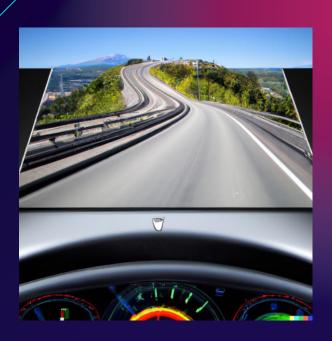
Level 2+/3 Automation

#### 2022



- Mercedes-Benz launched sales of its Drive Pilot system capable of operating at SAE Level 3 autonomy
- Baidu unveils new autonomous vehicle Apollo RT6
- Nvidia launched a mapping product for the autonomous vehicle industry
- California regulator claims Tesla falsely advertising its Autopilot and Full Self-Driving features




Baidu Inc. obtained permits to operate fully driverless robotaxi services on open roads without human safety drivers in the car

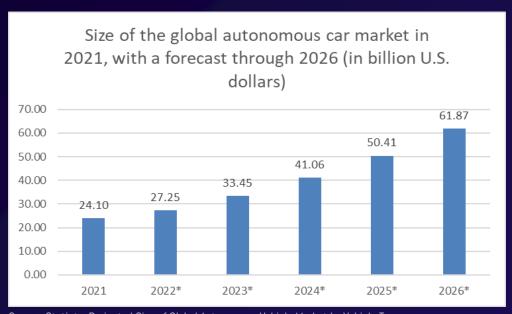


- Alibaba teams up with Tesla rival Xpeng on tech for driverless cars
- Wejo partners with Roadside Telematics for intelligent 9-1-1 crash data, directions and traffic with RTTI
- Open Data and Open-Source collaboration models gain momentum
- More regulation in place but commercialization hurdles persist

02

# Competitive Landscape




DALL-E2 Generated Image



# Quick Glance

Worth \$USD 27Billion, expected to reach \$USD62 Billion by 2026

Consolidated Market in the next few years



Source: Statista: Projected Size of Global Autonomous Vehicle Market by Vehicle Type



# Market Leaders



Value: \$899.45 B

Miles Driven: 35 million



Value: \$30 B

Miles Driven: 2.3 million



Value: \$21 B

Miles Driven: 876,104



# Industry challengers



Value: \$8.5 billion
Miles Driven: 305,616



**Value:** \$1.2B

Miles Driven: 155,125



**Value:** \$7.2 B

Miles Driven: 21,037

# Industry enablers







# **Industry Trends**



DALL-E2 Generated Image

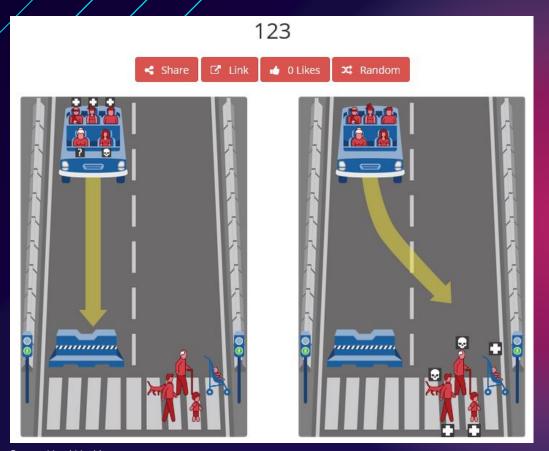


# Industry trends

| <u>Category</u> | <u>Current state</u>                                                               | <u>Future state</u>                                                                            |
|-----------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Technology      | Sensors (LiDAR, RADAR),<br>Cameras, Basic computer<br>vision                       | Deep reinforcement learning,<br>Simultaneous Localization and Mapping<br>(SLAM), Path planning |
| Market Type     | Robotaxi, Ride sharing                                                             | Autonomous delivery veicles and trucks,<br>Mobility-as-a-Service (MaaS)                        |
| Features        | Advanced Driver Assist<br>System (ADAS), sign<br>recognition, autopilot<br>(Tesla) | Electrification, Connectivity, AR based navigation                                             |
| Safety          | Prevent road accidents,<br>minimize vehicle system<br>malfunction                  | Better cybersecurity and privacy features, Reduce radiation exposure                           |






04

# **Ethical Concerns**



DALL-E2 Generated Image

# Trolley Problem



Source: Moral Machine

# Who is responsible?



"For maximum safety, we can install a shiny metal bull bar, or more discreetly, an AI that always puts passengers first."

# Other Ethical Concerns Safety **Privacy Environment** Social

05

Timeframe to Maturity



DALL-E2 Generated Image

## Words from the Oracle...



Vision vs Reality



### Recap: Levels of Automation

~ We are here ~

#### LEVELS OF DRIVING AUTOMATION



#### NO AUTOMATION

Manual control. The human performs all driving tasks (steering, acceleration, braking, etc.)



DRIVER ASSISTANCE

The vehicle features a single automated system (e.g. it monitors speed through cruise control).



2

#### PARTIAL AUTOMATION

ADAS. The vehicle can perform steering and acceleration. The human still monitors all tasks and can take control at any time. 3

#### CONDITIONAL

Environmental detection capabilities. The vehicle can perform most driving tasks, but human override is still required. 4

#### HIGH AUTOMATION

The vehicle performs all driving tasks under specific circumstances. Geofencing is required. Human override is still an option.

#### FULL AUTOMATION

The vehicle performs all driving tasks under all conditions. Zero human attention or interaction is required.

THE HUMAN MONITORS THE DRIVING ENVIRONMENT

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

## TIMELINE

2010s

2023

2025?

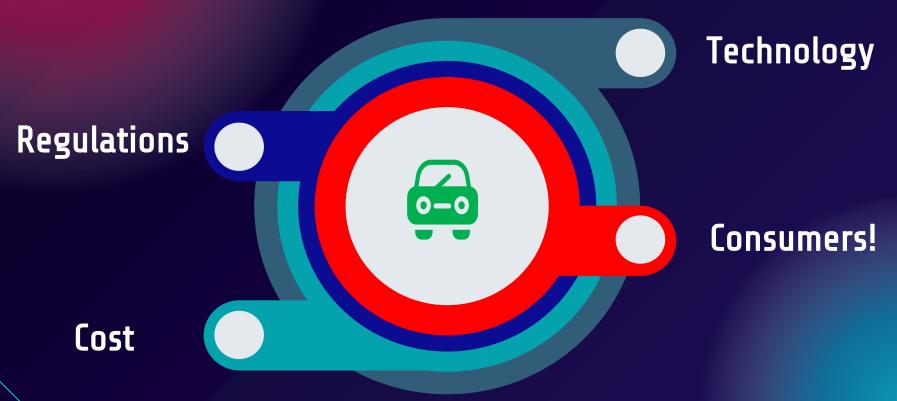
2030+?

Level 2

Growing adoption ~30% market share

Level 3

Soon...
Premium Vehicles


Level 4

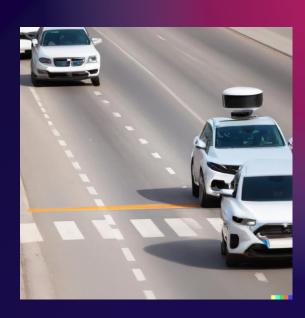
Robotaxis/Rideshare In select Locations

Level 5

Is it even possible?

## **Challenges to Adoption**






CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** 





# Appendix



DALL-E2 Generated Image



## The Evolution of Self Driving Cars



Leonardo da Vinci: A cart that could move without being pushed or pulled



GM's Futurama exhibit at the World's Fair envisages cars that drive themselves



Stanford University roboticists developed the autonomous Stanford Cart based on the Lunar Rover platform



A vision-guided Mercedes-Benz robotic van, designed by Ernst Dickmanns



14<sup>th</sup> Century

1500's

1920's

1930's

1950's

1960's

1970's

1980's

1990's

Al Jazari. "The Book of Knowledge of Ingenious Mechanical Devices"



Radiocontrolled "American Wonder"

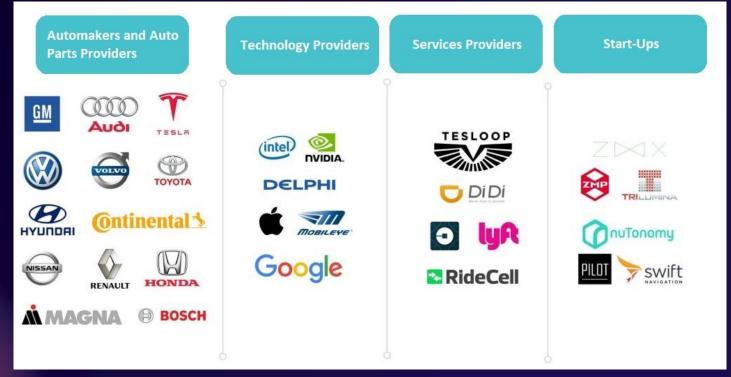


GM tested a rudimentary self-steering Chevrolet



Tsukuha Lah created a car equipped with cameras and analogue signal processing computers




A team of CMU roboticists drove a 1990 Pontiac without human help

Level O Automation

Level 1 Automation



# Autonomous Vehicle Ecosystem






# The Guidehouse Insights Leaderboard Grid

Q2 2021

The criteria by which manufacturers are compared:

- Vision
- Go-to-Market Strategy
- Partners
- Production Strategy
- Technology
- Sales, Marketing, and Distribution
- Commercial Readiness
- R&D Progress
- Product Portfolio
- Staying Power



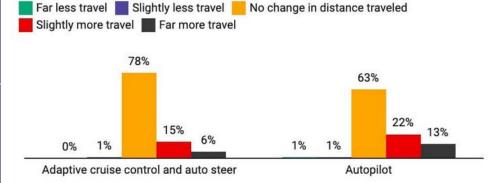


# Industry trends

#### Trends:

- Innovation Electrification and connectivity
- Price Cars to be 50% more expensive by 2030
- Technology Better hardware + software integration
- Manufacturing Improvements in process efficiencies

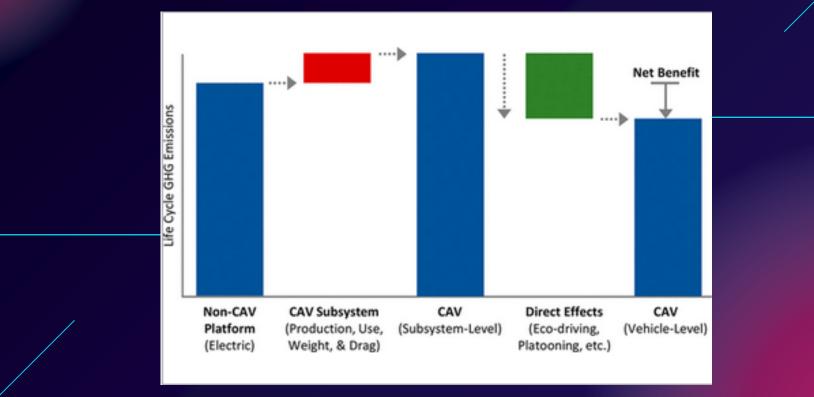
#### Features:


- Semi-autonomous / Fully autonomous
- ML/Al to learn passenger routines and preferences
- Better safety, cybersecurity and privacy features
- Augmented reality (AR) based navigation



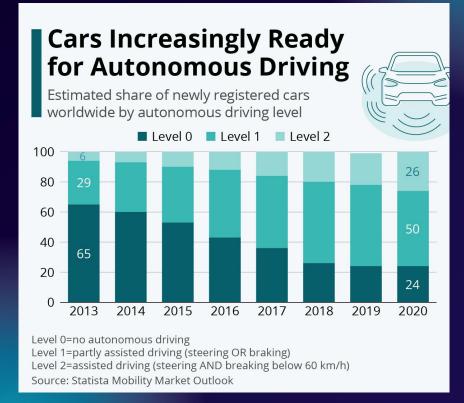
## Potential Negative Environmental Impact

# When people drive partially automated vehicles, they travel farther


In a 2019 survey of 940 owners of partially automated vehicles in California, 21%-35% reported that they did more long-distance travel such as weekend and vacation trips because of the cars' partially automated operating systems.

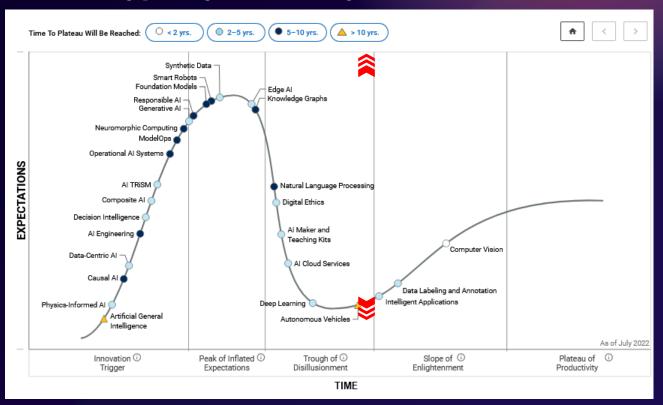


Autopilot refers to drivers with Tesla Autopilot. Adaptive cruise control and auto steer includes drivers of other vehicle makes with partial automation, such as Nissan Pro Pilot, BMW Driving Assistant or Cadillac Supercruise.


Source: Earth.org: Pros and cons of Self-driving Cars

# Potential Positive Environmental Impact




Source: Pubs.acs.org: Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects

## Marketshare of LO-L2 Automation over time



Source: Statista: Newly Registered Cars by Autonomous Driving Level

## Gartner AI Hype Cycle – July 2022



# Companies investing in autonomous vehicles

Vehicles operating in SAE levels of automation 1-3 are already in commercial use and many companies are investing further in developing highly and fully automated vehicles **Keous** ntinental 🕏 **FedEx** Microsoft nuTonomy AURORA lyR

# **AV** investment

