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1  Waze_Project

1.1  Objectives

Understanding churn rate
Assessing relationships with churn rate and other variables
Create a model that could potentially predict churn rate

This project shows the process of data analysis but also includes regression modelling and
machine learning techniques to showcase the skillsets I have.

I have added conclusions to each section, some are slighlty repeated as each section can have
some overlap.

Even though they can be looked into seperately, I have attempted to create a flow as a case
scenerio.

You will also notice library imports happening within the sections it is needed isntead of an
initial mass import of libraries and packages.



The source of the data was provided by Google and does not necessesarily represent actual
data

1.2  Understanding_the_Dataset

In [579]:

In [580]:

In [581]:

Out[581]: ID label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1

0 0 retained 283 226 296.748273 2276 208

1 1 retained 133 107 326.896596 1225 19

2 2 retained 114 95 135.522926 2651 0

3 3 retained 49 40 67.589221 15 322

4 4 retained 84 68 168.247020 1562 166

5 5 retained 113 103 279.544437 2637 0

6 6 retained 3 2 236.725314 360 185

7 7 retained 39 35 176.072845 2999 0

8 8 retained 57 46 183.532018 424 0

9 9 churned 84 68 244.802115 2997 72

# Import packages for data manipulation
 
import pandas as pd
import numpy as np
 
# Ignore warnings
 
import warnings
warnings.filterwarnings('ignore')

# Load dataset into dataframe
OG_waze = pd.read_csv(r'C:\Users\dalla\My Python Stuff\Waze Data Project\waze_

# Understand data frame
OG_waze.head(10)



In [582]:

In [583]:

**Initial summary of dataset

1) There are 14,999 rows and 13 columns 2) There are 3 main data types, (total_sessions,
driven_km_drives and duration_minutes_drives are) floats64, (ID, sessions, drives,
n_days_after_onboarding, fav1 and fav2 activity days and driving days are) int64,
(labels,device) object data types. 3) There are 700 rows with missing values and they are all in
the label column

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 13 columns):
#   Column                   Non-Null Count  Dtype  

---  ------                   --------------  -----  
0   ID                       14999 non-null  int64  
1   label                    14299 non-null  object 
2   sessions                 14999 non-null  int64  
3   drives                   14999 non-null  int64  
4   total_sessions           14999 non-null  float64
5   n_days_after_onboarding  14999 non-null  int64  
6   total_navigations_fav1   14999 non-null  int64  
7   total_navigations_fav2   14999 non-null  int64  
8   driven_km_drives         14999 non-null  float64
9   duration_minutes_drives  14999 non-null  float64
10  activity_days            14999 non-null  int64  
11  driving_days             14999 non-null  int64  
12  device                   14999 non-null  object 

dtypes: float64(3), int64(8), object(2)
memory usage: 1.5+ MB

ID                           0
label                      700
sessions                     0
drives                       0
total_sessions               0
n_days_after_onboarding      0
total_navigations_fav1       0
total_navigations_fav2       0
driven_km_drives             0
duration_minutes_drives      0
activity_days                0
driving_days                 0
device                       0
dtype: int64

OG_waze.info()

# Check for number of null rows
num_null_rows = OG_waze.isnull().sum()
 
print(num_null_rows)



In [584]:

In [585]:

No differences in data between non-null and null values.

In [586]:

Out[584]: ID sessions drives total_sessions n_days_after_onboarding total_navi

count 700.000000 700.000000 700.000000 700.000000 700.000000

mean 7405.584286 80.837143 67.798571 198.483348 1709.295714

std 4306.900234 79.987440 65.271926 140.561715 1005.306562

min 77.000000 0.000000 0.000000 5.582648 16.000000

25% 3744.500000 23.000000 20.000000 94.056340 869.000000

50% 7443.000000 56.000000 47.500000 177.255925 1650.500000

75% 11007.000000 112.250000 94.000000 266.058022 2508.750000

max 14993.000000 556.000000 445.000000 1076.879741 3498.000000

Out[585]: ID sessions drives total_sessions n_days_after_onboarding total_

count 14299.000000 14299.000000 14299.000000 14299.000000 14299.000000

mean 7503.573117 80.623820 67.255822 189.547409 1751.822505

std 4331.207621 80.736502 65.947295 136.189764 1008.663834

min 0.000000 0.000000 0.000000 0.220211 4.000000

25% 3749.500000 23.000000 20.000000 90.457733 878.500000

50% 7504.000000 56.000000 48.000000 158.718571 1749.000000

75% 11257.500000 111.000000 93.000000 253.540450 2627.500000

max 14998.000000 743.000000 596.000000 1216.154633 3500.000000

Out[586]: iPhone     447
Android    253
Name: device, dtype: int64

# Isolating null values
null_OG = OG_waze[OG_waze['label'].isnull()]
 
# Display summary stats of rows with null values
null_OG.describe()

# Isolaing rows without null values
nonull_OG = OG_waze[~OG_waze ['label'].isnull()]
 
#Display non null values 
nonull_OG.describe()

#Comparing Iphone and Android Null values 
null_OG['device'].value_counts()



Out of the total 700 null values, 447 were using Iphone devices and 253 were using Android
devices.

In [587]:

In [588]:

The data is consistent and there is nothing that suggests a patters in terms of non-randomness
of the missing data.

In [589]:

This dataset contains 82% retained users and 18% churned users.

Out[587]: iPhone     0.638571
Android    0.361429
Name: device, dtype: float64

Out[588]: iPhone     0.644843
Android    0.355157
Name: device, dtype: float64

retained    11763
churned      2536
Name: label, dtype: int64

retained    0.822645
churned     0.177355
Name: label, dtype: float64

# Percentage of Iphone and Andoird null values
null_OG['device'].value_counts(normalize=True)

# Calculate % of iPhone users and Android users in full dataset
OG_waze['device'].value_counts(normalize=True)

# Calculate counts of churned vs. retained
print(OG_waze['label'].value_counts())
print()
print(OG_waze['label'].value_counts(normalize=True))



In [590]:

In [591]:

Churned users have more total sessions, and usage of waze then retained users in a shorter
amount of time (n_days_after_onboarding).

             ID  sessions  drives  total_sessions  n_days_after_onboarding  
\
label                                                                        
churned   7477.5      59.0    50.0      164.339042                   1321.0  
retained  7509.0      56.0    47.0      157.586756                   1843.0  

         total_navigations_fav1  total_navigations_fav2  driven_km_drives  \
label                                                                        
churned                     84.5                    11.0       3652.655666   
retained                    68.0                     9.0       3464.684614   

         duration_minutes_drives  activity_days  driving_days  
label                                                           
churned               1607.183785            8.0           6.0  
retained              1458.046141           17.0          14.0  

                ID  sessions    drives  total_sessions  \
label                                                     
churned   51.779015  0.408554  0.346232        1.137989   
retained  51.279363  0.382427  0.320966        1.076168   

         n_days_after_onboarding  total_navigations_fav1  \
label                                                       
churned                  9.147453                0.585132   
retained                12.585946                0.464376   

         total_navigations_fav2  driven_km_drives  duration_minutes_drives  
\
label                                                                        
churned                 0.076171         25.293335                11.129173  
retained                0.061461         23.660517                 9.957075  

         activity_days  driving_days  
label                                  
churned        0.055397      0.041548  
retained       0.116094      0.095607  

# Median of all columns for retained and churned users
 
OG_median = OG_waze.groupby('label').median()
 
print(OG_median)

percent_OG_median = OG_median.divide(OG_median.sum(axis=1), axis=0) * 100
 
print(percent_OG_median)



In [592]:

the median for both and retained and churned are basically the same

In [593]:

In [594]:

The median user who churned drove 608 kilometers each day they drove last month, which is
almost 250% the per-drive-day distance of retained users. The median churned user had a
similarly disproporionate number of drives per drive day compared to retained users.

In consideration of how much these users drive, it would be worthwhile to recommend to Waze
that they gather more data on these super-drivers. It's possible that the reason for their driving
so much is also the reason why the Waze app does not meet their specific set of needs, which
may differ from the needs of a more typical driver, such as a commuter.

Median kilometers per drive:

Out[592]: label
churned     73.053113
retained    73.716694
dtype: float64

Median kilometers per driving day:

Out[593]: label
churned     608.775944
retained    247.477472
dtype: float64

Median drives per driving day:

Out[594]: label
churned     8.333333
retained    3.357143
dtype: float64

# Group data by `label` and calculate the medians
medians_by_label = OG_waze.groupby('label').median(numeric_only=True)
print('Median kilometers per drive:')
# Divide the median distance by median number of drives
medians_by_label['driven_km_drives'] / medians_by_label['drives']

# Divide the median distance by median number of driving days
print('Median kilometers per driving day:')
medians_by_label['driven_km_drives'] / medians_by_label['driving_days']

# Divide the median number of drives by median number of driving days
print('Median drives per driving day:')
medians_by_label['drives'] / medians_by_label['driving_days']



In [595]:

In [596]:

in percentages it seems they are both similar in each device if its grouped by churned or
retained

2  Exploratory_Data_Analysis
Assessing outliers and existing patterns.

In [597]:

In [598]:

Out[595]: label     device 
churned   Android     891
         iPhone     1645
retained  Android    4183
         iPhone     7580
dtype: int64

Out[596]: label     device 
churned   iPhone     0.648659
         Android    0.351341
retained  iPhone     0.644393
         Android    0.355607
Name: device, dtype: float64

# For each label, calculate the number of Android users and iPhone users
OG_waze.groupby(['label', 'device']).size()

# Percentage of each device in retained and churned
OG_waze.groupby('label')['device'].value_counts(normalize=True)

# importing more packages for EDA stage
import matplotlib.pyplot as plt
import seaborn as sns

# Defining a histogram funtion to reduce repetitiveness
# To investigate each column as a historgram and its median 
 
def histogrammer(column_str, median_text=True, **kwargs):    # **kwargs = any 
                                                             # from the sns.hi
    median=round(OG_waze[column_str].median(), 1)
    plt.figure(figsize=(5,3))
    ax = sns.histplot(x=OG_waze[column_str], **kwargs)            # Plot the h
    plt.axvline(median, color='red', linestyle='--')         # Plot the median
    if median_text==True:                                    # Add median text
        ax.text(0.25, 0.85, f'median={median}', color='red',
            ha='left', va='top', transform=ax.transAxes)
    else:
        print('Median:', median)
    plt.title(f'{column_str} histogram');



In [599]:

The sessions variable is a right-skewed distribution with half of the observations having 56 or
fewer sessions. However, as indicated by the boxplot, some users have more than 700.

# Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=OG_waze['sessions'], fliersize=1)
plt.title('sessions box plot');
 
# Histogram for sessions
histogrammer('sessions')



In [600]:

The drives information follows a distribution similar to the sessions variable. It is right-skewed,
with a median of 48. However, some drivers had over 400 drives in the last month as seen n
the box plot

#Box plot for sessions
plt.figure(figsize=(5,1))
sns.boxplot(x=OG_waze['drives'], fliersize=1)
plt.title('drives box plot');
 
#Histogram for drives
histogrammer('drives')



In [601]:

The total sessions are rightly skewed. With the median of total sessions being 159.6. As th
emedian drives was 48, comapred to the total sessions median of 159.6, this means that
majority of drives occured last month

# Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=OG_waze['total_sessions'], fliersize=1)
plt.title('total_sessions box plot');
 
#Histogram for total_sessions
histogrammer('total_sessions')



In [602]:

The n_days_after_onboarding is a uniform distribution. starting from almost 0 to 3500 days.

I decided to add on a boxplot function as there was repetition for this, ideally it should have
been done earlier. The following function is for a boxplot specifically for the OG_waze dataset.

Median: 1741.0

# Box plot for days after onboarding
plt.figure(figsize=(5,1))
sns.boxplot(x=OG_waze['n_days_after_onboarding'], fliersize=1)
plt.title('n_days_after_onboarding box plot');
 
#Historgram for days after onboarding
histogrammer('n_days_after_onboarding', median_text =False)



In [603]:

In [604]:

# Creating boxplot function and its parameter description.
def boxplotter(column, data=OG_waze, figsize=(5, 1), title=None):
    """
    Function to plot a box plot for a specified column in the data.
 
    Parameters:
    - column (str): Name of the column to plot.
    - data (DataFrame, optional): Data to plot. Defaults to OG_waze.
    - figsize (tuple, optional): Figure size. Defaults to (5, 1).
    - title (str, optional): Title for the plot. If None, default title will b
 
    Returns:
    - None
    """
    plt.figure(figsize=figsize)
    sns.boxplot(x=data[column], fliersize=1)
    if title:
        plt.title(title)
    else:
        plt.title(f'{column} box plot')
    plt.show()

boxplotter('driven_km_drives')
histogrammer('driven_km_drives')



In [605]:

The duration_minutes_drives is skewed to the right. Half of the users drove less then 1482 min.

# box plit for duration_minutes_drives 
boxplotter('duration_minutes_drives')
 
#Histogram for duration_minutes_drives
histogrammer('duration_minutes_drives')



In [606]:

Over the past month, the median frequency of users launching the app stands at 16 times. The
box plot indicates a balanced distribution. The histogram illustrates an almost consistent
distribution, with around 500 users accessing the app for each specific day count. Intriguingly,
about 250 users never accessed the app, while a similar number used it daily.

What's remarkable about this distribution is that it doesn't align with the sessions distribution,
even though one might assume they'd be closely related to activity_days.

#boxplot for activity_days
boxplotter('activity_days')
 
#histogram for activity_days
histogrammer('activity_days')



In [607]:

The frequency of days users drove within a month is fairly consistent and largely mirrors the
days they accessed the app during the same period. However, a decline is noticed in the
distribution of driving_days towards the end.

Interestingly, around 1,000 users didn't drive in the entire month, almost double the figure of
550. This is puzzling when juxtaposed with the data from activity_days, where about 500 users
accessed the app on varying day counts. Only approximately 250 of them didn't launch the app
at all in the month, while a similar number used it daily. This discrepancy warrants a closer look
later on.

#boxplot for driving_days
boxplotter('driving_days')
 
#histogram for driving days
histogrammer('driving_days')



In [608]:

In [609]:

less than 18% of users churned (17.7%)

# Pie chart
fig = plt.figure(figsize=(3,3))
data=OG_waze['device'].value_counts()
plt.pie(data,
        labels=[f'{data.index[0]}: {data.values[0]}',
                f'{data.index[1]}: {data.values[1]}'],
        autopct='%1.1f%%'
        )
plt.title('Users by device');

# Pie chart
fig = plt.figure(figsize=(3,3))
data=OG_waze['label'].value_counts()
plt.pie(data,
        labels=[f'{data.index[0]}: {data.values[0]}',
                f'{data.index[1]}: {data.values[1]}'],
        autopct='%1.1f%%'
        )
plt.title('Count of retained vs. churned');



In [610]:

You would expect a relationship with driving days and activity days. But as seen in the
histogram there are days of the month that has more activity (opening the app) while very little
and at times no driving that occurs. This can be simply because users open the app but do not
use it to drive, perhaps to look at routes or traffic etc

In [611]:

In [612]:

The max for driving days is 30 and activity days is 31. This is unlikely as it means out of the 30
days there was no one who took a drive on the 31st day while there are 14,999 entries in the
dataset.

30
31

12.179878658577238
15.537102473498233

# Histogram
plt.figure(figsize=(12,4))
label=['driving days', 'activity days']
plt.hist([OG_waze['driving_days'], OG_waze['activity_days']],
         bins=range(0,33),
         label=label)
plt.xlabel('days')
plt.ylabel('count')
plt.legend()
plt.title('driving_days vs. activity_days');

print(OG_waze['driving_days'].max())
print(OG_waze['activity_days'].max())

print(OG_waze['driving_days'].mean())
print(OG_waze['activity_days'].mean())



In [613]:

In [614]:

The data looks good, as you cant have more driving days than activity days, since driving
directly results in a activity day.

#Scatter plot function
 
def scatterer(x_column, y_column, data=OG_waze, title=None, xlabel=None, ylabe
    plt.figure(figsize=figsize)
    sns.scatterplot(x=data[x_column], y=data[y_column])
    
    if title:
        plt.title(title)
    if xlabel:
        plt.xlabel(xlabel)
    else:
        plt.xlabel(x_column)
    if ylabel:
        plt.ylabel(ylabel)
    else:
        plt.ylabel(y_column)
    
    plt.plot([0, 32], [0, 32], color='red', linestyle='--')
    plt.show()

scatterer('driving_days','activity_days')



In [615]:

In [616]:

Due to driving days haveing values of zero. Pandas divides with the 0 and result is undefined.
Thus converting infinity values to 0.

Out[616]: count    1.499900e+04
mean              inf
std               NaN
min      3.022063e+00
25%      1.672804e+02
50%      3.231459e+02
75%      7.579257e+02
max               inf
Name: km_per_driving_day, dtype: float64

# Histogram showing devices 
plt.figure(figsize=(5,4))
sns.histplot(data = OG_waze,
             x='device',
             hue='label',
             multiple='dodge',
             shrink=0.9
             )
plt.title('Retention by device histogram');

#Create `km_per_driving_day` column
OG_waze['km_per_driving_day'] = OG_waze['driven_km_drives'] / OG_waze['driving
 
#Call `describe()` on the new column
OG_waze['km_per_driving_day'].describe()



In [617]:

The max of 15,420 km in a day would not be correct. To handle this incorrect data a range will
be used to remove impossible distances.

In [618]:

Out[617]: count    14999.000000
mean       578.963113
std       1030.094384
min          0.000000
25%        136.238895
50%        272.889272
75%        558.686918
max      15420.234110
Name: km_per_driving_day, dtype: float64

#Convert infinite values to zero
OG_waze.loc[OG_waze['km_per_driving_day']==np.inf, 'km_per_driving_day'] = 0
 
#Confirm that it worked
OG_waze['km_per_driving_day'].describe()

histogrammer('km_per_driving_day', bins=range(0,1201,20))



In [619]:

From the histogram we can tell that the more KM driven in a day, the more users churned.

In [620]:

# Histogram
plt.figure(figsize=(12,5))
sns.histplot(data=OG_waze,
             x='km_per_driving_day',
             bins=range(0,1201,20),
             hue='label',
             multiple='fill')
plt.ylabel('%', rotation=0)
plt.title('Churn rate by mean km per driving day');

#Hisotgram showing churned rate vs per driving day
plt.figure(figsize=(12,5))
sns.histplot(data=OG_waze,
             x='driving_days',
             bins=range(0,31),
             hue='label',
             multiple='fill')
plt.ylabel('%', rotation=0)
plt.title('Churn rate per driving day');



The churn rate peaks for individuals who barely engaged with Waze over the past month. As
their app usage increased, their likelihood to churn decreased. For example, while 40% of
those who didn't open the app at all in the previous month opted out, none of the users who
accessed it for 30 days did.

This observation aligns with expectations. If frequent users started to opt out, it might suggest
they're unhappy with the app. On the other hand, infrequent users leaving could be a reflection
of past discontent or perhaps a reduced necessity for a navigation tool. They might've relocated
to areas with efficient public transit and no longer need to drive.

In [621]:

In [622]:

In [623]:

In [624]:

Fifty percent of the individuals in the dataset conducted 40% or more of their sessions within
the recent month, even though the average time since their initial registration is nearly five
years.

Subsequently, I will construct a histogram showcasing the n_days_after_onboarding
specifically for those who had 40% or above of their complete sessions in the preceding month.

Out[622]: 0.42309702992763176

Median: 0.4

Out[624]: 1741.0

OG_waze['percent_sessions_in_last_month'] = OG_waze['sessions'] / OG_waze['tot

OG_waze['percent_sessions_in_last_month'].median()

# Histogram
histogrammer('percent_sessions_in_last_month',
             hue=OG_waze['label'],
             multiple='layer',
             median_text=False)

#Checking median days after onboarding
OG_waze['n_days_after_onboarding'].median()



In [625]:

This is a uniform distribution. As per project objective, we would need more information from
Waze on why long time users have stopped using the app in the last month.

Initially we discovered some outliers in the box plot and also some data that might not be
incorrect. The outliers will need to be handled before we continue.

Found a function for exactly this scenerio.

In [626]:

In [627]:

                sessions | percentile: 0.95 | threshold: 243.0
                  drives | percentile: 0.95 | threshold: 201.0
          total_sessions | percentile: 0.95 | threshold: 454.3632037399997
        driven_km_drives | percentile: 0.95 | threshold: 8889.7942356
 duration_minutes_drives | percentile: 0.95 | threshold: 4668.899348999998

# Histogram
data = OG_waze.loc[OG_waze['percent_sessions_in_last_month']>=0.4]
plt.figure(figsize=(5,3))
sns.histplot(x=data['n_days_after_onboarding'])
plt.title('Num. days after onboarding for users with >=40% sessions in last mo

def outlier_imputer(column_name, percentile):
    # Calculate threshold
    threshold = OG_waze[column_name].quantile(percentile)
    # Impute threshold for values > than threshold
    OG_waze.loc[OG_waze[column_name] > threshold, column_name] = threshold
 
    print('{:>25} | percentile: {} | threshold: {}'.format(column_name, percen

for column in ['sessions', 'drives', 'total_sessions', 'driven_km_drives', 'du
    outlier_imputer(column,0.95)
    



In [628]:

In [629]:

In [630]:

EDA insights:

Out[628]: ID sessions drives total_sessions n_days_after_onboarding total_

count 14999.000000 14999.000000 14999.000000 14999.000000 14999.000000

mean 7499.000000 76.568705 64.058204 184.031320 1749.837789

std 4329.982679 67.297958 55.306924 118.600463 1008.513876

min 0.000000 0.000000 0.000000 0.220211 4.000000

25% 3749.500000 23.000000 20.000000 90.661156 878.000000

50% 7499.000000 56.000000 48.000000 159.568115 1741.000000

75% 11248.500000 112.000000 93.000000 254.192341 2623.500000

max 14998.000000 243.000000 201.000000 454.363204 3500.000000

Out[630]: ID label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1

0 0 retained 243.0 201.0 296.748273 2276 208

1 1 retained 133.0 107.0 326.896596 1225 19

2 2 retained 114.0 95.0 135.522926 2651 0

3 3 retained 49.0 40.0 67.589221 15 322

4 4 retained 84.0 68.0 168.247020 1562 166

5 5 retained 113.0 103.0 279.544437 2637 0

6 6 retained 3.0 2.0 236.725314 360 185

7 7 retained 39.0 35.0 176.072845 2999 0

8 8 retained 57.0 46.0 183.532018 424 0

9 9 churned 84.0 68.0 244.802115 2997 72

OG_waze.describe()

OG_waze['monthly_drives_per_session_ratio'] = (OG_waze['drives']/OG_waze['sess

OG_waze.head(10)



Most variables were right-skewed or uniformly distributed.
While the data was largely consistent, some variables like

3  Hypothesis_Testing
In [631]:

Hypotheses:

𝐻0 : There is no difference in average number of drives between drivers who use iPhone
devices and drivers who use Androids.

𝐻𝐴 : There is a difference in average number of drives between drivers who use iPhone
devices and drivers who use Androids.

5% as the significance level

In [632]:

In [633]:

Out[632]: 0    2
1    1
2    2
3    1
4    2
Name: device_type, dtype: int64

Out[633]: device_type
1    64.446340
2    63.353482
Name: drives, dtype: float64

#importing packages
from scipy import stats

#Creating `map_dictionary`
map_dictionary = {'Android': 2, 'iPhone': 1}
 
#Creating new `device_type` column
OG_waze['device_type'] = OG_waze['device']
 
#Mapping the new column to the dictionary
OG_waze['device_type'] = OG_waze['device_type'].map(map_dictionary)
 
OG_waze['device_type'].head()

OG_waze.groupby('device_type')['drives'].mean()



In [634]:

Since the p-value is larger than the chosen significance level (5%), we fail to reject the null
hypothesis. we conclude that there is not a statistically significant difference in the average
number of drives between drivers who use iPhones and drivers who use Androids. The key
business insight is that drivers who use iPhone devices on average have a similar number of
drives as those who use Androids.

Hypothesis testing insights:

A primary observation is that, on average, drivers using iPhones record a
similar drive count as Android users.

A logical follow-up would be to delve into other elements affecting the drive
count and conduct more hypothesis testing to understand user patterns
better. Additionally, short-term adjustments in Waze app's marketing or
user interface might offer further data to scrutinize churn.

4  Regression_Modelling
In [635]:

Out[634]: Ttest_indResult(statistic=1.164371413602629, pvalue=0.24429844267242234)

#Isolate the `drives` column for iPhone users.
iPhone = OG_waze[OG_waze['device_type'] == 1]['drives']
 
#Isolate the `drives` column for Android users.
Android = OG_waze[OG_waze['device_type'] == 2]['drives']
 
#Perform the t-test
stats.ttest_ind(a=iPhone, b=Android, equal_var=False)

#importing packages 
 
# Packages for Logistic Regression & Confusion Matrix
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score, precision_s
recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.linear_model import LogisticRegression



In [636]:

We had implemented a cut off in the monthly drives column which results in 14894. This is not
missing data but purposely limited.

The label column as mentioned before is missing 700 values.

In [637]:

Lets remove columns that are not needed for the analysis.

(14999, 17)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 17 columns):
#   Column                            Non-Null Count  Dtype  

---  ------                            --------------  -----  
0   ID                                14999 non-null  int64  
1   label                             14299 non-null  object 
2   sessions                          14999 non-null  float64
3   drives                            14999 non-null  float64
4   total_sessions                    14999 non-null  float64
5   n_days_after_onboarding           14999 non-null  int64  
6   total_navigations_fav1            14999 non-null  int64  
7   total_navigations_fav2            14999 non-null  int64  
8   driven_km_drives                  14999 non-null  float64
9   duration_minutes_drives           14999 non-null  float64
10  activity_days                     14999 non-null  int64  
11  driving_days                      14999 non-null  int64  
12  device                            14999 non-null  object 
13  km_per_driving_day                14999 non-null  float64
14  percent_sessions_in_last_month    14999 non-null  float64
15  monthly_drives_per_session_ratio  14894 non-null  float64
16  device_type                       14999 non-null  int64  

dtypes: float64(8), int64(7), object(2)
memory usage: 1.9+ MB

Out[637]: ID label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1

0 0 retained 243.0 201.0 296.748273 2276 208

1 1 retained 133.0 107.0 326.896596 1225 19

2 2 retained 114.0 95.0 135.522926 2651 0

3 3 retained 49.0 40.0 67.589221 15 322

4 4 retained 84.0 68.0 168.247020 1562 166

# Summary of dataset
print(OG_waze.shape)
 
OG_waze.info()

OG_waze.head()



In [638]:

In [639]:

In [640]:

The features that were previously created were km_per_driving_day,
percent_sessions_in_last_month, monthly_drives_per_session_ratio.

The max values for the following columns seem to be outliers:

sessions
drives
total_sessions
total_navigations_fav1
total_navigations_fav2
driven_km_drives
duration_minutes_drives

In [641]:

In [642]:

Out[639]: retained    0.822645
churned     0.177355
Name: label, dtype: float64

Out[640]: sessions drives total_sessions n_days_after_onboarding total_navigations_fav

count 14999.000000 14999.000000 14999.000000 14999.000000 14999.0000

mean 76.568705 64.058204 184.031320 1749.837789 121.6059

std 67.297958 55.306924 118.600463 1008.513876 148.12154

min 0.000000 0.000000 0.220211 4.000000 0.0000

25% 23.000000 20.000000 90.661156 878.000000 9.0000

50% 56.000000 48.000000 159.568115 1741.000000 71.0000

75% 112.000000 93.000000 254.192341 2623.500000 178.0000

max 243.000000 201.000000 454.363204 3500.000000 1236.0000

0    12405
1     2594
Name: pro_driver, dtype: int64

waze_rm = OG_waze.drop('ID', axis=1)

waze_rm['label'].value_counts(normalize=True)

waze_rm.describe()

waze_rm['pro_driver'] = np.where((waze_rm['drives'] >= 60) & (waze_rm['driving

print(waze_rm['pro_driver'].value_counts())



In [643]:

The churn rate for professional drivers is 7.6%, while the churn rate for non-professionals is
19.9%. This seems like it could add predictive signal to the model.

In [644]:

dropping the missing columns from label

In [645]:

Out[643]: pro_driver  label   
0           retained    0.801202
           churned     0.198798
1           retained    0.924437
           churned     0.075563
Name: label, dtype: float64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 17 columns):
#   Column                            Non-Null Count  Dtype  

---  ------                            --------------  -----  
0   label                             14299 non-null  object 
1   sessions                          14999 non-null  float64
2   drives                            14999 non-null  float64
3   total_sessions                    14999 non-null  float64
4   n_days_after_onboarding           14999 non-null  int64  
5   total_navigations_fav1            14999 non-null  int64  
6   total_navigations_fav2            14999 non-null  int64  
7   driven_km_drives                  14999 non-null  float64
8   duration_minutes_drives           14999 non-null  float64
9   activity_days                     14999 non-null  int64  
10  driving_days                      14999 non-null  int64  
11  device                            14999 non-null  object 
12  km_per_driving_day                14999 non-null  float64
13  percent_sessions_in_last_month    14999 non-null  float64
14  monthly_drives_per_session_ratio  14894 non-null  float64
15  device_type                       14999 non-null  int64  
16  pro_driver                        14999 non-null  int32  

dtypes: float64(8), int32(1), int64(6), object(2)
memory usage: 1.9+ MB

waze_rm.groupby(['pro_driver']) ['label'].value_counts(normalize=True)

waze_rm.info()

waze_rm_dropped = waze_rm.dropna(subset=['label'])



In [646]:

lets also place threshholds on the columns with the outliers just as we did with monthly drives
ratio.

In [647]:

In [648]:

In [649]:

Out[646]: sessions drives total_sessions n_days_after_onboarding total_navigations_fav

count 14299.000000 14299.000000 14299.000000 14299.000000 14299.0000

mean 76.539688 64.014546 183.663233 1751.822505 121.7473

std 67.243178 55.251272 118.596924 1008.663834 147.7134

min 0.000000 0.000000 0.220211 4.000000 0.0000

25% 23.000000 20.000000 90.457733 878.500000 10.0000

50% 56.000000 48.000000 158.718571 1749.000000 71.0000

75% 111.000000 93.000000 253.540450 2627.500000 178.0000

max 243.000000 201.000000 454.363204 3500.000000 1236.0000

Out[649]: sessions drives total_sessions n_days_after_onboarding total_navigations_fav

count 14299.000000 14299.000000 14299.000000 14299.000000 14299.0000

mean 76.539688 63.964683 183.663233 1751.822505 114.5627

std 67.243178 55.127927 118.596924 1008.663834 124.3785

min 0.000000 0.000000 0.220211 4.000000 0.0000

25% 23.000000 20.000000 90.457733 878.500000 10.0000

50% 56.000000 48.000000 158.718571 1749.000000 71.0000

75% 111.000000 93.000000 253.540450 2627.500000 178.0000

max 243.000000 200.000000 454.363204 3500.000000 422.0000

waze_rm_dropped.describe()

waze_rm_dropped = waze_rm_dropped.copy()
 

for column in ['sessions', 'drives', 'total_sessions', 'total_navigations_fav1
               'total_navigations_fav2', 'driven_km_drives', 'duration_minutes
    threshold = waze_rm_dropped[column].quantile(0.95)
    waze_rm_dropped.loc[waze_rm_dropped[column] > threshold, column] = thresho

waze_rm_dropped.describe()



In [650]:

The assumptions for logistic regression has been met apart from the last 2 which can be done
after modelling

Assumptions of logistic regression:

Independant observations - [x]
No extreme outliers - [x]
Little to no multicollinearity among X predictors - [ ]
Linear relationship between X and the logit of y - [ ]

We will have to set up a correlation matrix to check the correlation with the predictor variables

Instead of using some features that were created in EDA, will be dropping them for modelling.

In [651]:

Out[650]: label label2

14994 retained 0

14995 retained 0

14996 retained 0

14997 churned 1

14998 retained 0

#Encoding label from categorical to binary 0 being retained and 1 being churne
 
# Create binary `label2` column
waze_rm_dropped['label2'] = np.where(waze_rm_dropped['label']=='churned', 1, 0
waze_rm_dropped[['label', 'label2']].tail()

waze_rm_dropped = waze_rm_dropped.drop(['percent_sessions_in_last_month', 'mon



In [652]:

In [653]:

Out[652]: sessions drives total_sessions n_days_after_onboarding total_nav

sessions 1.000000 0.996942 0.597299 0.007101

drives 0.996942 1.000000 0.595396 0.006940

total_sessions 0.597299 0.595396 1.000000 0.006615

n_days_after_onboarding 0.007101 0.006940 0.006615 1.000000

total_navigations_fav1 0.001858 0.001058 0.000194 -0.002450

total_navigations_fav2 0.008536 0.009505 0.010363 -0.004968

driven_km_drives 0.002995 0.003445 0.001015 -0.004655

duration_minutes_drives -0.004545 -0.003889 -0.000345 -0.010167

activity_days 0.025113 0.024357 0.015757 -0.009418

driving_days 0.020294 0.019608 0.012957 -0.007321

km_per_driving_day -0.011569 -0.010989 -0.016162 0.011764

device_type -0.012704 -0.011684 -0.012133 0.011299

pro_driver 0.443654 0.444425 0.254532 0.003770

label2 0.034911 0.035865 0.024568 -0.129263

# Generate a correlation matrix
waze_rm_dropped.corr(method='pearson')

# Plot correlation heatmap
plt.figure(figsize=(15,10))
sns.heatmap(waze_rm_dropped.corr(method='pearson'), vmin=-1, vmax=1, annot=Tru
plt.title('Correlation heatmap indicates many low correlated variables',
          fontsize=18)
plt.show();



The variables that have mutlicollinearity are:

sessions and drives: 1.0
driving_days and activity_days: 0.95

In [654]:

Creating a new binary column for device to device 2. The column device_type will not be
necessary to use here.

In [655]:

In [656]:

In [657]:

In [658]:

In [659]:

Out[654]: label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1 tot

0 retained 243.0 200.0 296.748273 2276 208.0

1 retained 133.0 107.0 326.896596 1225 19.0

2 retained 114.0 95.0 135.522926 2651 0.0

3 retained 49.0 40.0 67.589221 15 322.0

4 retained 84.0 68.0 168.247020 1562 166.0

Out[656]: device device2

14994 iPhone 1

14995 Android 0

14996 iPhone 1

14997 iPhone 1

14998 iPhone 1

waze_rm_dropped.head()

waze_rm_dropped=waze_rm_dropped.drop('device_type', axis = 1)

# Creating new `device2` variable
waze_rm_dropped['device2'] = np.where(waze_rm_dropped['device']=='Android', 0,
waze_rm_dropped[['device', 'device2']].tail()

# Isolate predictor variables
X = waze_rm_dropped.drop(columns = ['label', 'label2', 'device', 'sessions', '

# Isolating target variable
y = waze_rm_dropped['label2']

#split_test
# Performing the train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_s



In [660]:

In [661]:

In [662]:

In [663]:

Out[660]: drives total_sessions n_days_after_onboarding total_navigations_fav1 total_navigations_

152 108.0 186.192746 3116 243.0 1

11899 2.0 3.487590 794 114.0

10937 139.0 347.106403 331 4.0

669 108.0 454.363204 2320 11.0

8406 10.0 89.475821 2478 135.0

Out[661]: LogisticRegression(max_iter=400, penalty='none')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust
the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page
with nbviewer.org.

Out[662]: drives                     0.001915
total_sessions             0.000328
n_days_after_onboarding   -0.000406
total_navigations_fav1     0.001232
total_navigations_fav2     0.000926
driven_km_drives          -0.000015
duration_minutes_drives    0.000109
activity_days             -0.106024
km_per_driving_day         0.000018
pro_driver                -0.001528
device2                   -0.001041
dtype: float64

Out[663]: array([-0.00170627])

# Use .head()
X_train.head()

# fitting model x train on y train. penalty set to none as predictors are unsc
model = LogisticRegression(penalty='none', max_iter=400)
 
model.fit(X_train, y_train)

pd.Series(model.coef_[0], index=X.columns)

model.intercept_



In [664]:

In [665]:

In [666]:

4.1  Evaluation_of_Model

In [667]:

In [668]:

Out[664]: array([[0.93965209, 0.06034791],
      [0.61967449, 0.38032551],
      [0.76458201, 0.23541799],
      ...,
      [0.91908213, 0.08091787],
      [0.85095402, 0.14904598],
      [0.93515678, 0.06484322]])

Out[668]: 0.8237762237762237

# Get the predicted probabilities of the training data
training_probabilities = model.predict_proba(X_train)
training_probabilities

# 1. Copy the `X_train` dataframe and assign to `logit_data`
logit_data = X_train.copy()
 
# 2. Create a new `logit` column in the `logit_data` df
logit_data['logit'] = [np.log(prob[1] / prob[0]) for prob in training_probabil

#  Plot regplot of `activity_days` log-odds
sns.regplot(x='activity_days', y='logit', data=logit_data, scatter_kws={'s': 2
plt.title('Log-odds: activity_days');

#Generate predictions on X test
y_preds = model.predict(X_test)

# Score the model (accuracy) on the test data
model.score(X_test, y_test)



In [669]:

In [670]:

In [671]:

In [672]:

In [673]:

Overall Model Performance:
Accuracy: 82% on a test dataset of 3,575 instances.

Retained Users Classification:
Precision: 83%.
Recall: 98%.

Out[671]: 0.5178571428571429

Out[672]: 0.0914826498422713

             precision    recall  f1-score   support

   retained       0.83      0.98      0.90      2941
    churned       0.52      0.09      0.16       634

   accuracy                           0.82      3575
  macro avg       0.68      0.54      0.53      3575
weighted avg       0.78      0.82      0.77      3575

cm = confusion_matrix(y_test, y_preds)

disp = ConfusionMatrixDisplay(confusion_matrix=cm, 
                              display_labels=['retained', 'churned'],
                              )
disp.plot();

precision = cm[1,1] / (cm[0,1] + cm[1,1])
precision

recall = cm[1,1] / (cm[1,1] + cm[1,0])
recall

#Create a classification report
target_labels = ['retained', 'churned']
print(classification_report(y_test, y_preds, target_names=target_labels))



Churned Users Classification:
Precision: 52%.
Recall: 9%.

Insights:
The model is proficient in predicting retained users but struggles with churned users.
Despite a decent overall accuracy, the low recall for "churned" indicates a high
number of false negatives.
The class imbalance between "retained" and "churned" might influence the high
accuracy rate.

As the goal is to predict churned users, this model would not be a good choice to use. To
improve the model, i decided to take a look at feature importance and see which of the features
has the biggest impact.

In [674]:

Out[674]: [('drives', 0.0019146636449751556),
('total_navigations_fav1', 0.0012318288515483966),
('total_navigations_fav2', 0.00092633468241052),
('total_sessions', 0.00032750041378524933),
('duration_minutes_drives', 0.00010909313081863752),
('km_per_driving_day', 1.8258738149154475e-05),
('driven_km_drives', -1.488022450014146e-05),
('n_days_after_onboarding', -0.00040649907901463777),
('device2', -0.001040753192386349),
('pro_driver', -0.0015281741341061981),
('activity_days', -0.10602428908502631)]

# Create a list of (column_name, coefficient) tuples
waze_feature_importance = list(zip(X_train.columns, model.coef_[0]))
 
# Sort the list by coefficient value
waze_feature_importance = sorted(waze_feature_importance, key=lambda x: x[1], 
waze_feature_importance



In [675]: # Plot the feature importance
sns.barplot(x=[x[1] for x in waze_feature_importance],
            y=[x[0] for x in waze_feature_importance],
            orient='h')
plt.title('Waze Feature importance');

<h2 id="Feature_Importance_Summary">Feature_Importance_Summary</h2>
 
<h3 id="Positive_Influence_on_Target">Positive_Influence_on_Target</h3>
 
- **drives**: Most significant positive feature with an importance of 
0.0019.
- **total_navigations_fav1**: Second most influential positive feature with 
a score of 0.0012.
- **total_navigations_fav2**: Positive influence with a score of 0.0009.
- **total_sessions**: Has a minor positive influence of 0.0003.
- **duration_minutes_drives**: A very minor positive influence with a score 
of 0.0001.
- **km_per_driving_day**: Holds the least positive influence with an 
importance close to 0 (1.83e-05).
 
<h3 id="Negative_Influence_on_Target">Negative_Influence_on_Target</h3>
 
- **activity_days**: Most significant negative feature with a score of 
-0.1060. 
- **n_days_after_onboarding**: Negative influence with a score of -0.0004.
- **device2**: Holds a negative influence of -0.0010.
- **pro_driver**: Another negative influencer with a score of -0.0015.
- **driven_km_drives**: Has a very minor negative influence, close to 0 
(-1.49e-05).
 
`activity_days` has the most substantial influence on user churn among all 
features. The more active days a user has, the less likely they are to 
churn.
On the other hand, features like `km_per_driving_day` and `driven_km_drives` 
have a very minimal influence on the target.



4.2.3  Model_Enhancement_and_Additional_Data_Suggestions

4.2.4  Feature_Engineering_and_Model_Refinement

Engineered features, especially with domain knowledge, can enhance
predictive capability.
The professional_driver  feature stands out as a key predictive
predictor.
Scaling predictor variables and re-evaluating model predictors can
potentially reduce noise and improve performance.

4.2.5  Desired_Additional_Data

Drive-level Information**: Data about drive times and geographic locations
of each user.
User-App Interaction**: Granularity on how users engage with the app,
such as frequency of reporting or confirming road hazards.
Travel Patterns**: Monthly count of unique start and end locations input by
drivers.

Leveraging the above suggestions could yield a more robust and predictive model.

5  Building_the_Machine_Learning_Model
Goal:

To predict if cusotmer will churn or retain

pro_driver and device2 seem to have protective qualities against churn; 
their increase is associated with a reduction in churn.



In [676]:

In [677]:

In [678]:

In [679]:

Lets bring the previous features we had dropped. We would have to calculate it again,

Requirement already satisfied: xgboost in c:\users\dalla\anaconda3\lib\site-p
ackages (1.7.6)
Requirement already satisfied: numpy in c:\users\dalla\anaconda3\lib\site-pac
kages (from xgboost) (1.20.1)
Requirement already satisfied: scipy in c:\users\dalla\anaconda3\lib\site-pac
kages (from xgboost) (1.6.2)

Out[678]: label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1 tot

0 retained 243.0 200.0 296.748273 2276 208.0

1 retained 133.0 107.0 326.896596 1225 19.0

2 retained 114.0 95.0 135.522926 2651 0.0

3 retained 49.0 40.0 67.589221 15 322.0

4 retained 84.0 68.0 168.247020 1562 166.0

#installation of xgboost
# To install xgboost directly to ide
!pip install xgboost 
 
# To view all columns in the frame
pd.set_option('display.max_columns', None)
 
# Import packages for data modeling
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import roc_auc_score, roc_curve, auc
from sklearn.metrics import accuracy_score, precision_score, recall_score,\
f1_score, confusion_matrix, ConfusionMatrixDisplay, RocCurveDisplay, Precision
 
from sklearn.ensemble import RandomForestClassifier
 
from xgboost import XGBClassifier
 
# This is the function that helps plot feature importance
from xgboost import plot_importance
 
# This module lets us save our models once we fit them.
import pickle

waze_new = waze_rm.append(waze_rm_dropped)

waze_rm_dropped.head()

waze_new = waze_rm_dropped



In [680]:

In [681]:

In [682]:

In [683]:

Out[680]: count    14299.000000
mean         0.444101
std          0.278496
min          0.000000
25%          0.200241
50%          0.427865
75%          0.665012
max          1.530637
Name: percent_sessions_in_last_month, dtype: float64

Out[681]: label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1 tot

0 retained 243.0 200.0 296.748273 2276 208.0

1 retained 133.0 107.0 326.896596 1225 19.0

2 retained 114.0 95.0 135.522926 2651 0.0

3 retained 49.0 40.0 67.589221 15 322.0

4 retained 84.0 68.0 168.247020 1562 166.0

Out[683]: label sessions drives total_sessions n_days_after_onboarding total_navigations_fav1 tot

0 retained 243.0 200.0 296.748273 2276 208.0

1 retained 133.0 107.0 326.896596 1225 19.0

2 retained 114.0 95.0 135.522926 2651 0.0

3 retained 49.0 40.0 67.589221 15 322.0

4 retained 84.0 68.0 168.247020 1562 166.0

#Creating `percent_sessions_in_last_month` feature
waze_rm_dropped['percent_sessions_in_last_month'] = waze_rm_dropped['sessions'
 
#Get descriptive stats
waze_rm_dropped['percent_sessions_in_last_month'].describe()

waze_rm_dropped.head()

# Creating `total_sessions_per_day` feature
waze_rm_dropped['total_sessions_per_day'] = waze_rm_dropped['total_sessions'] 

waze_rm_dropped.head()



In [684]:

In [685]:

In [686]:

Out[684]: count    14299.000000
mean         0.052624
std          0.090946
min          0.020004
25%          0.025802
50%          0.033675
75%          0.053099
max          6.055706
Name: km_per_hour, dtype: float64

Out[685]: count    1.429900e+04
mean              inf
std               NaN
min      1.008775e+00
25%      3.365859e+01
50%      7.429025e+01
75%      1.828194e+02
max               inf
Name: km_per_drive, dtype: float64

Out[686]: count    14299.000000
mean       225.797731
std        572.400481
min          0.000000
25%         32.910489
50%         72.319628
75%        177.431844
max       8889.794236
Name: km_per_drive, dtype: float64

# Create `km_per_hour` feature
waze_rm_dropped['km_per_hour'] = waze_rm_dropped['driven_km_drives'] / waze_rm
waze_rm_dropped['km_per_hour'].describe()

# Creating `km_per_drive` feature
waze_rm_dropped['km_per_drive'] = waze_rm_dropped['driven_km_drives'] / waze_r
waze_rm_dropped['km_per_drive'].describe()

# 1. Convert infinite values to zero
waze_rm_dropped.loc[waze_rm_dropped['km_per_drive']==np.inf, 'km_per_drive'] =
 
# 2. Confirm that it worked
waze_rm_dropped['km_per_drive'].describe()



In [687]:

In [688]:

Splitting and training the model. We will be using recall to asess the perfomance of the model.

In [689]:

In [690]:

Now to create a random forest classifier and tune the hyperparemeters that will be included.

Out[687]: count    14299.000000
mean         1.575282
std          8.243636
min          0.000000
25%          0.212409
50%          0.648292
75%          1.593733
max        668.888397
Name: percent_of_drives_to_favorite, dtype: float64

Out[688]: retained    0.822645
churned     0.177355
Name: label, dtype: float64

8579
2860
2860

# Creating `percent_of_sessions_to_favorite` feature
waze_rm_dropped['percent_of_drives_to_favorite'] = (
    waze_rm_dropped['total_navigations_fav1'] + waze_rm_dropped['total_navigat
 
# Get descriptive stats
waze_rm_dropped['percent_of_drives_to_favorite'].describe()

waze_rm_dropped['label'].value_counts(normalize=True)

# Isolating X variables
X = waze_rm_dropped.drop(columns=['label', 'label2', 'device'])
 
# Isolating y variable
y = waze_rm_dropped['label2']
 
# Splitting into train and test sets
X_tr, X_test, y_tr, y_test = train_test_split(X, y, stratify=y,
                                              test_size=0.2, random_state=42)
 
# Splitting into train and validate sets
X_train, X_val, y_train, y_val = train_test_split(X_tr, y_tr, stratify=y_tr,
                                                  test_size=0.25, random_state

for x in [X_train, X_val, X_test]:
    print(len(x))



In [691]:

In [692]:

Fitting 4 folds for each of 96 candidates, totalling 384 fits
Wall time: 2min 18s

Out[692]: GridSearchCV(cv=4, estimator=RandomForestClassifier(random_state=42), n_jobs=
-1,
            param_grid={'max_depth': [None, 10, 20],
                        'max_features': ['auto', 0.5],
                        'max_samples': [None, 0.5], 'min_samples_leaf': [1, 
2],
                        'min_samples_split': [2, 5],
                        'n_estimators': [100, 200]},
            refit='recall',
            scoring={'accuracy': 'accuracy', 'f1': 'f1',
                     'precision': 'precision', 'recall': 'recall'},
            verbose=10)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust
the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page
with nbviewer.org.

# 1. Instantiate the random forest classifier
rf = RandomForestClassifier(random_state=42)
 
# 2. Create a dictionary of hyperparameters to tune
cv_params = {
    'max_depth': [None, 10, 20],
    'max_features': ['auto', 0.5],
    'max_samples': [None, 0.5],
    'min_samples_leaf': [1, 2],
    'min_samples_split': [2, 5],
    'n_estimators': [100, 200]
}
 
# 3. Define a dictionary of scoring metrics to capture
scoring = {
    'accuracy': 'accuracy',
    'precision': 'precision',
    'recall': 'recall',
    'f1': 'f1'
}
 
# 4. Instantiate the GridSearchCV object
rf_cv = GridSearchCV(rf, cv_params, scoring=scoring, cv=4, refit='recall', ver
 
 

%%time
rf_cv.fit(X_train, y_train)



In [693]:

In [694]:

Out[693]: 0.12548003867937563

Out[694]: {'max_depth': None,
'max_features': 0.5,
'max_samples': None,
'min_samples_leaf': 1,
'min_samples_split': 2,
'n_estimators': 100}

# Examine best score
rf_cv.best_score_

rf_cv.best_params_



In [695]:

In [696]:

Out[696]: model precision recall F1 accuracy

0 RF cv 0.49812 0.12548 0.200423 0.822356

def make_results(model_name:str, model_object, metric:str):
    '''
    Arguments:
        model_name (string): what you want the model to be called in the outpu
        model_object: a fit GridSearchCV object
        metric (string): precision, recall, f1, or accuracy
 
    Returns a pandas df with the F1, recall, precision, and accuracy scores
    for the model with the best mean 'metric' score across all validation fold
    '''
 
    # Create dictionary that maps input metric to actual metric name in GridSe
    metric_dict = {'precision': 'mean_test_precision',
                   'recall': 'mean_test_recall',
                   'f1': 'mean_test_f1',
                   'accuracy': 'mean_test_accuracy',
                   }
 
    # Get all the results from the CV and put them in a df
    cv_results = pd.DataFrame(model_object.cv_results_)
 
    # Isolate the row of the df with the max(metric) score
    best_estimator_results = cv_results.iloc[cv_results[metric_dict[metric]].i
 
    # Extract accuracy, precision, recall, and f1 score from that row
    f1 = best_estimator_results.mean_test_f1
    recall = best_estimator_results.mean_test_recall
    precision = best_estimator_results.mean_test_precision
    accuracy = best_estimator_results.mean_test_accuracy
 
    # Create table of results
    table = pd.DataFrame({'model': [model_name],
                          'precision': [precision],
                          'recall': [recall],
                          'F1': [f1],
                          'accuracy': [accuracy],
                          },
                         )
 
    return table

results = make_results('RF cv', rf_cv, 'recall')
results



In [697]: # 1. Instantiate the XGBoost classifier
xgb = XGBClassifier(objective='binary:logistic', random_state=42)
 
# 2. Create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [6, 12],
             'min_child_weight': [3, 5],
             'learning_rate': [0.01, 0.1],
             'n_estimators': [300]
             }
 
# 3. Define a dictionary of scoring metrics to capture
scoring = {
    'accuracy': 'accuracy',
    'precision': 'precision',
    'recall': 'recall',
    'f1': 'f1'
}
 
# 4. Instantiate the GridSearchCV object
xgb_cv = GridSearchCV(xgb, cv_params, scoring=scoring, cv=4, refit='recall')



In [698]:

In [699]:

In [700]:

Wall time: 33.4 s

Out[698]: GridSearchCV(cv=4,
            estimator=XGBClassifier(base_score=None, booster=None,
                                    callbacks=None, colsample_bylevel=None,
                                    colsample_bynode=None,
                                    colsample_bytree=None,
                                    early_stopping_rounds=None,
                                    enable_categorical=False, eval_metric=No
ne,
                                    feature_types=None, gamma=None,
                                    gpu_id=None, grow_policy=None,
                                    importance_type=None,
                                    interaction_constraints=None,
                                    learning_rate=None,...
                                    max_leaves=None, min_child_weight=None,
                                    missing=nan, monotone_constraints=None,
                                    n_estimators=100, n_jobs=None,
                                    num_parallel_tree=None, predictor=None,
                                    random_state=42, ...),
            param_grid={'learning_rate': [0.01, 0.1], 'max_depth': [6, 12],
                        'min_child_weight': [3, 5], 'n_estimators': [300]},
            refit='recall',
            scoring={'accuracy': 'accuracy', 'f1': 'f1',
                     'precision': 'precision', 'recall': 'recall'})

In a Jupyter environment, please rerun this cell to show the HTML representation or trust
the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page
with nbviewer.org.

Out[699]: 0.16886137588064648

Out[700]: {'learning_rate': 0.1,
'max_depth': 12,
'min_child_weight': 3,
'n_estimators': 300}

%%time
xgb_cv.fit(X_train, y_train)

# Examine best score
xgb_cv.best_score_

# Examine best parameters
xgb_cv.best_params_



In [701]:

Selecting champion model

In [702]:

In [703]:

Out[701]: model precision recall F1 accuracy

0 RF cv 0.498120 0.125480 0.200423 0.822356

0 XGB cv 0.429664 0.168861 0.242401 0.812798

# Call 'make_results()' on the GridSearch object
xgb_cv_results = make_results('XGB cv', xgb_cv, 'recall')
results = pd.concat([results, xgb_cv_results], axis=0)
results

# Use random forest model to predict on validation data
rf_val_preds = rf_cv.best_estimator_.predict(X_val)

def get_test_scores(model_name:str, preds, y_test_data):
    '''
    Generate a table of test scores.
 
    In:
        model_name (string): Your choice: how the model will be named in the o
        preds: numpy array of test predictions
        y_test_data: numpy array of y_test data
 
    Out:
        table: a pandas df of precision, recall, f1, and accuracy scores for y
    '''
    accuracy = accuracy_score(y_test_data, preds)
    precision = precision_score(y_test_data, preds)
    recall = recall_score(y_test_data, preds)
    f1 = f1_score(y_test_data, preds)
 
    table = pd.DataFrame({'model': [model_name],
                          'precision': [precision],
                          'recall': [recall],
                          'F1': [f1],
                          'accuracy': [accuracy]
                          })
 
    return table



In [704]:

XGBoost

In [705]:

Using the champion model above, lets use it to predict.

Out[704]: model precision recall F1 accuracy

0 RF cv 0.498120 0.125480 0.200423 0.822356

0 XGB cv 0.429664 0.168861 0.242401 0.812798

0 RF val 0.478261 0.130178 0.204651 0.820629

Out[705]: model precision recall F1 accuracy

0 RF cv 0.498120 0.125480 0.200423 0.822356

0 XGB cv 0.429664 0.168861 0.242401 0.812798

0 RF val 0.478261 0.130178 0.204651 0.820629

0 XGB val 0.407609 0.147929 0.217077 0.810839

# Get validation scores for RF model
rf_val_scores = get_test_scores('RF val', rf_val_preds, y_val)
 
# Append to the results table
results = pd.concat([results, rf_val_scores], axis=0)
results

# Use XGBoost model to predict on validation data
xgb_val_preds = xgb_cv.best_estimator_.predict(X_val)
 
# Get validation scores for XGBoost model
xgb_val_scores = get_test_scores('XGB val', xgb_val_preds, y_val)
 
# Append to the results table
results = pd.concat([results, xgb_val_scores], axis=0)
results



In [706]:

5.1  Confusion_Matrix_for_Champion_Model

In [707]:

Feature importance in the champion model

Out[706]: model precision recall F1 accuracy

0 RF cv 0.498120 0.125480 0.200423 0.822356

0 XGB cv 0.429664 0.168861 0.242401 0.812798

0 RF val 0.478261 0.130178 0.204651 0.820629

0 XGB val 0.407609 0.147929 0.217077 0.810839

0 XGB test 0.415179 0.183432 0.254446 0.809441

# Use XGBoost model to predict on test data
xgb_test_preds = xgb_cv.best_estimator_.predict(X_test)
 
# Get test scores for XGBoost model
xgb_test_scores = get_test_scores('XGB test', xgb_test_preds, y_test)
 
# Append to the results table
results = pd.concat([results, xgb_test_scores], axis=0)
results

# Generate array of values for confusion matrix
cm = confusion_matrix(y_test, xgb_test_preds, labels=xgb_cv.classes_)
 
# Plot confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
                             display_labels=['retained', 'churned'])
disp.plot();



In [708]:

In [709]:

Requirement already satisfied: scikit-learn in c:\users\dalla\anaconda3\lib\s
ite-packages (1.3.0)
Requirement already satisfied: numpy>=1.17.3 in c:\users\dalla\anaconda3\lib
\site-packages (from scikit-learn) (1.20.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\dalla\anacond
a3\lib\site-packages (from scikit-learn) (2.1.0)
Requirement already satisfied: scipy>=1.5.0 in c:\users\dalla\anaconda3\lib\s
ite-packages (from scikit-learn) (1.6.2)
Requirement already satisfied: joblib>=1.1.1 in c:\users\dalla\anaconda3\lib
\site-packages (from scikit-learn) (1.3.2)
Note: you may need to restart the kernel to use updated packages.

plot_importance(xgb_cv.best_estimator_);

pip install --upgrade scikit-learn



In [710]:

In [711]:

In [712]:

In [713]:

Out[711]: array([[0.99251163, 0.00748836],
      [0.74189436, 0.2581056 ],
      [0.99660224, 0.00339775],
      ...,
      [0.82451403, 0.17548597],
      [0.9839575 , 0.01604244],
      [0.7869331 , 0.21306688]], dtype=float32)

Out[712]: array([0, 0, 0, ..., 0, 0, 0])

Out[713]: model precision recall F1 accuracy

0 XGB, threshold = 0.4 0.39404 0.234714 0.29419 0.80035

# Plot precision-recall curve
display = PrecisionRecallDisplay.from_estimator(
    xgb_cv.best_estimator_, X_test, y_test, name='XGBoost'
    )
plt.title('Precision-recall curve, XGBoost model');

# Get predicted probabilities on the test data
predicted_probabilities = xgb_cv.best_estimator_.predict_proba(X_test)
predicted_probabilities

# Create a list of just the second column values (probability of target)
probs = [x[1] for x in predicted_probabilities]
 
# Create an array of new predictions that assigns a 1 to any value >= 0.4
new_preds = np.array([1 if x >= 0.4 else 0 for x in probs])
new_preds

# Get evaluation metrics for when the threshold is 0.4
get_test_scores('XGB, threshold = 0.4', new_preds, y_test)



In [714]:

Out[714]: model precision recall F1 accuracy

0 RF cv 0.498120 0.125480 0.200423 0.822356

0 XGB cv 0.429664 0.168861 0.242401 0.812798

0 RF val 0.478261 0.130178 0.204651 0.820629

0 XGB val 0.407609 0.147929 0.217077 0.810839

0 XGB test 0.415179 0.183432 0.254446 0.809441

results



In [715]:

In [716]:

Out[716]: (0.114, 0.5009861932938856)

def threshold_finder(y_test_data, probabilities, desired_recall):
    '''
    Find the decision threshold that most closely yields a desired recall scor
 
    Inputs:
        y_test_data: Array of true y values
        probabilities: The results of the `predict_proba()` model method
        desired_recall: The recall that you want the model to have
 
    Outputs:
        threshold: The decision threshold that most closely yields the desired
        recall: The exact recall score associated with `threshold`
    '''
    probs = [x[1] for x in probabilities]  # Isolate second column of `probabi
    thresholds = np.arange(0, 1, 0.001)    # Set a grid of 1,000 thresholds to
 
    scores = []
    for threshold in thresholds:
        # Create a new array of {0, 1} predictions based on new threshold
        preds = np.array([1 if x >= threshold else 0 for x in probs])
        # Calculate recall score for that threshold
        recall = recall_score(y_test_data, preds)
        # Append the threshold and its corresponding recall score as a tuple t
        scores.append((threshold, recall))
 
    distances = []
    for idx, score in enumerate(scores):
        # Calculate how close each actual score is to the desired score
        distance = abs(score[1] - desired_recall)
        # Append the (index#, distance) tuple to `distances`
        distances.append((idx, distance))
 
    # Sort `distances` by the second value in each of its tuples (least to gre
    sorted_distances = sorted(distances, key=lambda x: x[1], reverse=False)
    # Identify the tuple with the actual recall closest to desired recall
    best = sorted_distances[0]
    # Isolate the index of the threshold with the closest recall score
    best_idx = best[0]
    # Retrieve the threshold and actual recall score closest to desired recall
    threshold, recall = scores[best_idx]
 
    return threshold, recall

# Get the predicted probabilities from the champion model
probabilities = xgb_cv.best_estimator_.predict_proba(X_test)
 
# Call the function
threshold_finder(y_test, probabilities, 0.5)



In [717]:

6  Conclusion
In the minimum without the regression model or machine learning, we understand the following:

Most variables were right-skewed or uniformly distributed.
While the data was largely consistent, some variables like
driven_km_drives had dubious values.
Discrepancies in monthly metrics (e.g., activity_days vs. driving_days)
suggest potential data inconsistencies.
It's advisable to consult the Waze data team about these inconsistencies
and the recent surge in app usage by long-term users.
User retention stood at ~82% with 18% churning.
Users driving longer distances per day were more likely to churn; frequent
drivers were less likely.
User tenure in the data ranged from new to ~10 years, evenly represented.

Hypothesis testing insights:

A primary observation is that, on average, drivers using iPhones record a
similar drive count as Android users.

A logical follow-up would be to delve into other elements affecting the drive
count and conduct more hypothesis testing to understand user patterns
better. Additionally, short-term adjustments in Waze app's marketing or
user interface might offer further data to scrutinize churn.

Regression and machine learning model:

The model would not be recomended for use commercially or by the
business, instead it can be used as a follow up point internally to keep
improving the model as more data comes in. A lack of data can impede the
process. In this case, I do not have access to waze or am i able to ask
them follow up questions from the "understanding the data" section.

Out[717]: model precision recall F1 accuracy

0 XGB, threshold = 0.124 0.301337 0.489152 0.372932 0.708392

# Create an array of new predictions that assigns a 1 to any value >= 0.124
new_preds = np.array([1 if x >= 0.124 else 0 for x in probs])
 
# Get evaluation metrics for when the threshold is 0.124
get_test_scores('XGB, threshold = 0.124', new_preds, y_test)



If maximizing recall is more important (i.e., catching as many churn cases
as possible), then the previous XGBoost model provided (with a threshold
of 0.124) is the best. It has the highest recall at 48.92%, even though its
precision is lower and its accuracy is considerably lower than the others.

I was able to detect feature importance which is vital for following up on the
model. We now know activity_days is the most important feature under the
regression model section. Whilst in the machine learning model
km_per_hour was the most important feature.

Engineered features accounted for 6 of 10 top features.

The ensembles of tree-based models in this project milestone are more
valuable than a singular logistic regression model because they achieve
higher scores across all evaluation metrics and require less preprocessing
of the data. However, it is more difficult to understand how they make their

di ti


